Document No: H260BC-1 Page 1 of 7

1 Scope

This specification is applicable to the "Vinnic®" brand Nickel -Metal Hydride rechargeable batteries for type H260BC

Chung Pak model: H260BC

IEC model: KB252/064(KBL26/7)

2 Technical Parameters

Items	Units	Parameters	Conditions and others
Nominal Voltage	V	1.2	Unit cell
Capacity a.nominal capacity	mAh	260	Standard charge/discharge
b.typical capacity	mAh	280	Standard charge/discharge
Charging Method	mA	26(0.1C)	Charge at 20± 5℃
a. standard charge	h	14~16	Charging temperature : 0~+45°C
b. accelerated charge	mΑ	52(0.2C)	Charge at 20± 5°C
	h	8	Charging temperature : 10∼+45°C
c. trickle charge	mA	7.8~13	Continuous charge at 0.03~0.05C and 0~45°C
Discharging Method	h	≧5	Discharge at 0.2C(52mA) to a final voltage of 1.0V at
a.standard discharge(0.2C)			20± 5℃
b.maximum discharging	min	≥80	Discharge at 0.5C(130mA) to a final voltage of 0.9V at
current (0.5C)			20±5℃
c.discharge at 0± 2°C (0.2C)	h	<u>≥</u> 4	Discharge at 0.2C(52mA) to a final voltage of 1.0V.
Overcharge	h	≥4.25	At 20± 5°C, charge at 0.1C(26mA) for 28 days, rest for
			1~4h, then discharge at 0.2C(52mA) to a final voltage
			of 1.0 V.
Charge Retention	h	≥3.75	After standard charge, store for 28 days at 20± 5°C,
			then discharge at 0.2C(52mA) to a final voltage of
			1.0V
Cycle Life	cycle	≥500	IEC509: 1988(4.4)
Storage Temperature	$^{\circ}\mathbb{C}$	20± 10	Discharge at 0.2C(52mA) to a final voltage of
Storage Relative Humidity	%	65± 20	1.0V,then store for 12 months.
Discharge Temperature	$^{\circ}\!\mathbb{C}$	-20~+45	
Dimension a. Diameter	mm	25.25(-0.4)	
b. Height	mm	6.6(-0.6)	
Weight (approx.)	g	11.0	

When the battery open-circuit voltage is below 1.25V before first time application or after long time storage, the battery shall be charged at 0.1C(26mA) for16h or at 0.2C(52mA) for 8h, and rested for 1~4h, then discharged at 0.2C(52mA) to a final voltage of 1.0V. Recycle for 2~3 times, then charge the battery to restore capacity for using.